590 research outputs found

    Emphasizing colonization in modern environmental and women’s activist movements in India and the future of ecofeminist movements for creating a more just and sustainable future

    Get PDF
    This research discusses the extent of colonial acknowledgement in modern women’s rights and environmental movements in India. British colonization profoundly altered the ecological landscape and social norms of the societies it affected while leaving behind institutional structures that encouraged and perpetuated discrimination, oppression, and environmental degradation. In the case of India, I illustrate pre-colonial norms surrounding environmental stewardship and women’s rights and compare it to post-colonial ideology to make a connection of modern human rights and environmental problems to a colonial past. Today’s popular environmental and women’s activist movements are analyzed to determine if colonial acknowledgment or a decolonial framework is present within the movements’ structures and solution building. I found only 2 out of the 18 movements had any mention of the effects of colonization. Finally, I suggest a non-essentialist updated “Third Wave” Ecofeminism as a possible movement that could be helpful in India due to its intersectional framework, decolonial structure, and it success in many parts of India and, famously, in post-colonial Kenya with the Green Belt Movement

    Fra restrÄstoff til verdifulle rÄvarer

    Get PDF
    Laying hens are commonly not slaughtered and utilized for food purpose. Slaughtered hens may be hydrolyzed (e.g. at 50°C for 1-2 hours, with additions of enzymes)to produce soluble proteins and oils. Sediments after such hydrolysis are valuable fertilizers, whereas the oil and proteins are valuable food ingredients of high quality

    Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability

    Get PDF
    Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not necessarily to the seasonal release of previously frozen organic carbon from thawing permafrost soils. However, as temperatures increase such inputs of carbon will likely have a greater influence on methane production and methanogen community structure. Understanding the action and limitations of anaerobic microorganisms within cold environments may provide information which can be used in defining region-specific differences in the microbial processes; which ultimately control methane flux to the atmosphere
    • 

    corecore